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1 Summary 

This technical documentation of the verified technology includes an introduction, 

three thematic chapters, a conclusion, a list of abbreviations, and a list of references.  

The introduction explains the need for a verified technology to be used in assessing 

forest aboveground biomass (AGB) in the forest conditions of the Czech Republic and 

Central Europe. 

Chapter 3 describes the technology for estimating forest AGB using an area-based 

approach (ABA), specifically including definition of the ABA, as well as description of 

the data needed from airborne laser scanning, additional field data, and the process 

of biomass modeling using machine learning methods. 

Chapter 4 illustrates the technological approach in developing and applying the 

biomass model to the Silesian Beskids project study site and verifying the model at 

the Ždírec nad Doubravou study site. 

Chapter 5 estimates and compares the time requirements for forest AGB assessment 

using conventional field inventory and by the ABA using ALS.  

The conclusion reiterates and summarizes the basic knowledge and subcomponents 

of the technology and provides further recommendations for its use in practice. 

2 Introduction. Need for the verified technology 

Estimating forest biomass (hereinafter just biomass) is fundamentally important for 

sustainable forest management and for better understanding the contribution of 

various forest ecosystems within the global carbon cycle. Spatially continuous forest 

biomass maps comprise one of the crucial inputs for climate mitigation strategies. 

Aboveground biomass (AGB) is defined as “the aboveground standing dry mass of 

live or dead matter from tree or shrub (woody) life forms, expressed as a mass per 

unit area, typically Mg ha−1” (Duncanson et al. 2021). Specifically, AGB estimates are 

used to establish the increment or decrement of carbon stored in forest, most often 

while converting AGB with a factor of 0.5 (i.e., 50% carbon content in dry matter) or 

more accurately according to woody species categories (Martin et al. 2011, 

Petersson et al. 2012).  

Forest biomass can be estimated using destructive and nondestructive sampling 

methods. Destructive methods are generally used only for developing so-called 

allometric equations for specific individual woody species based upon destructively 

sampled individual trees. These equations then represent empirical relationships for 
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estimating AGB based upon such measurable tree parameters as tree stem diameter 

and height. Obviously, it would be impractical to destructively sample all standing 

trees to estimate biomass within a given locality due to the negative environmental 

impacts and high cost of data collection (Henry et al. 2010). Hence, estimates of 

biomass within forest ecosystems at local and regional scales are conducted on the 

basis of selected surveys of forest inventories (national forest inventory, Kucera and 

Adolt 2019) and generalized allometric equations. In the Czech Republic, 

merchantable wood volume (measured in m3) and AGB are estimated for individual 

regions and individual tree species (Norway spruce, Scots pine, other conifers, and 

deciduous trees) (Fig. 1). At the operational level of forest management, more robust 

but less accurate estimates of growing stock at stand level are used for forest 

management planning. Nevertheless, detailed (stand-level) mapping of forest 

biomass as a whole has not heretofore been utilized in Czech forest management. 

 

Figure 1. Estimated merchantable tree volume in the Czech Republic in 2019 (source: 
Forest Management Institute (FMI), http://www.uhul.cz/kdo-jsme/aktuality/974-
zasoby-drivi-v-roce-2019). 

Experience from abroad shows that airborne laser scanning (ALS) is a remote survey 

approach increasingly being used for both practical and theoretical forestry 

applications (Maltamo et al. 2014). In processing ALS data, forest AGB (and other 

http://www.uhul.cz/kdo-jsme/aktuality/974-zasoby-drivi-v-roce-2019
http://www.uhul.cz/kdo-jsme/aktuality/974-zasoby-drivi-v-roce-2019


6 

 

characteristics) can be efficiently assessed and with accuracy and reliability 

comparable to those achieved by conventional field inventory methods (Melville et 

al. 2015, Noordermeer et al. 2019, Novotný et al. 2021). A so-called area-based 

approach (ABA) is most commonly used for modelling AGB using ALS (White et al. 

2013, Brubaker et al. 2018, Pears et al. 2019, Davison et al. 2020). Described in the 

literature are numerous methods for analyzing the relationships between forest AGB 

and ALS metrics for various data acquisition conditions and scanning parameters, 

forest structures and types, ALS cloud point densities, and machine learning 

algorithms (Fig. 2). 

 

Figure 2. Summary of key characteristics from recent studies on estimating forest 
aboveground biomass (AGB) from airborne laser scanning (ALS) data using an area-
based approach. B = Bayesian model, BRT = boosted regression trees, LinReg = linear 
regression, ML = machine learning, NN = neural network, RF = random forest, SVR = 
support vector regression, Cubist® = commercially available rule-based software 
(Walton 2008). 

Although estimating AGB using ABAs and their application to forestry have been the 

subject of active research for more than three decades (Naesset 2002, Nelson 2013, 

White et al. 2017), the technology has been little operationalized heretofore within 

Central Europe’s forest sector compared with the experience in using the technology 

within forests in Scandinavia (e.g., Naesset 2005, Villika et al. 2012, Kankare et al. 

2013, Bouvier 2015), Canada (e.g., White et al. 2015, Tompalski et al. 2019), and the 

U.S.A. (e.g., Anderson et al. 2013, Blackburn et al. 2021) (Fig. 2). Only a few studies 

have used ABAs for AGB assessment from ALS data in conditions of Central European 

forest (Patocka et al. 2016, Hawryto et al. 2017, Parkitna et al. 2021). A study by 
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Patocka et al. (2016) is the only one known to the authors to describe the application 

of ALS data for AGB assessment in the Czech Republic. Specific, practical 

recommendations are needed in order to apply an ABA for forest biomass modelling 

in the context of Czech Republic forest management, including those for setting ALS 

data acquisition parameters, season of data acquisition, field methods for collecting 

data and estimating AGB, as well as algorithms and modelling methods. These 

technologies are being utilized for purposes of answering the aforementioned 

questions, and they have been developed and verified for use in conditions of the 

Czech Republic and its forestry management. 

3 Technology for forest aboveground biomass assessment using an area-
based approach 

The technology for forest AGB estimation consists in three fundamental stages: 

acquisition and preprocessing of airborne and field data, modelling of the biomass 

by the ABA, and validation of the resulting maps. Key subcomponents of a successful 

implementation are in particular to meet certain requirements from the viewpoints 

of input data quality, careful preparation of the training data set for modeling, and 

evaluating the plausibility of the model (Fig. 3). 

Figure 3. Scheme of technology for forest aboveground biomass (AGB) assessment. 
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3.1 Definition of the area-based approach  

The basic principle behind the area-based approach (ABA) is that the 3D point cloud 

acquired by laser scanning contains information to characterize the ground surface 

and vegetation layers above that surface. The points representing vegetation and 

their heights are utilized to quantify specific metrics, among which include values for 

descriptive statistics (mean, percentile, and others) and values depending upon the 

density of the cloud with respect to crown-layer permeability. All of this information, 

in combination with field survey data concerning the explained variable (AGB), 

provides the basis for building prediction models (Naesset 2002, Vastaranta et al. 

2013, Maltamo et al. 2014) (Fig. 4). The main benefit of this modelling from aerial 

data consists in large-area prediction that on the level of an entire forest stand is of 

greater quality than can be obtained by extrapolation from individual inventory plots 

measured by conventional stand-level sampling. 

 

Figure 4. Main components of the area-based approach. AGB is forest aboveground 
biomass. 

3.2 Airborne laser scanning data for the area-based approach 

In this subsection, the usual parameters of point cloud data are discussed. The 
parameters are needed for the technological process and the individual steps of data 
preparation. 

3.2.1 Point cloud parameters 

A basic precondition for AGB estimation using the ABA is coverage of the area of 

interest by ALS.  In accordance with the conclusions reached by Brovkina et al. (2022, 

under review) and other studies, an ideal ALS point density for this technology is 

approximately 7.5 points/m2. Nevertheless, a sparser point density (2.5 or 5 

points/m2) does not much impair the model’s quality and also can be used (Fig. 5). 

Canopy conditions (leaf-on and leaf-off) have been shown to have no statistically 

significant impact on the strength of AGB models (Brovkina et al. 2022). Depending 

upon the species composition in the area of interest and the target quantity (i.e., 



9 

 

merchantable wood volume vs. total aboveground biomass), however, it may be 

more appropriate to acquire data with or without leaves. 

 

Figure 5. Cutout of a point cloud from airborne laser scanning data showing various 
point densities. 

3.2.2 Preparation of airborne data for modeling 

The first step in data processing is wave decomposition and geometric correction 

based upon the trajectory of the aircraft. This stage is specific to the type of device, 

and it is performed in software from the manufacturer of the laser scanner. The basic 

input for this technology is a point cloud of the entire area of interest in LAS format. 

In the second step, the noise points (if any) are removed from the cloud, cloud points 

are classified as terrain, buildings, higher vegetation and others (or minimally as 

terrain and others) and the Z coordinate is recalculated from altitude above sea level 

to height above terrain. A number of algorithms and software solutions are available 

for use in this step, such as the LAStools (http://lastools.org/) script package. An 

example illustrating this part of the procedure is shown in Fig. 6. 
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Figure 6. Illustration of point cloud classification and point cloud conversion to 

elevation. Shown at top is a section of the cloud in its original form, where the Z 

coordinate corresponds to altitude above sea level, and so we see that the forest 

and cottages stand on a slight slope. The points of the cloud are colored according 

to the order of reflection within one laser pulse. This emphasizes the fact that where 

the laser beam is reflected from solid surfaces (roof, meadow), it is reflected once; 

and in the forest stand, multiple reflections occur within one beam. In the lower part, 

the same section of the cloud is displayed after processing such that the Z coordinate 

corresponds to the height aboveground. Individual points are colored according to 

the classification into classes: brown = terrain, green = higher vegetation, red = 

buildings, gray = aboveground points unclassified. 

The theoretical basis of the area-based approach is the relationship that exists 

between the value of the inventory quantity (AGB) and statistical quantities 

describing the structure of the forest by means of a point cloud. In the following text, 

we refer to these quantities as predictors. 

Crucial for the model-training stage are the ground- (in situ-) determined biomass 

values that are tied to a particular place (according to X and Y coordinates) and its 

specific surroundings. In the following step, we assume that the basic unit of the field 
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measurements and area-based approach is a circular area of 500 m2. From a 

methodological point of view, however, the procedure can be easily be adapted to 

different but analogous unit sizes. 

In applying the model, a regular point network of the selected spatial step (for 

example, 20 m) is most often used, where the coordinates of individual points play 

the same role as do the coordinates of the field plots in the training stage. In the 

steps described below, we do not distinguish between these two situations. 

We draw a circular buffer with 12.61 m radius around the X-Y coordinates and select 

from the point cloud a subset of points that lie inside. An example of the sub-cloud 

thus obtained is shown in Fig. 5. 

Usually, density of the point cloud is not homogeneous in the coverage of a larger 

area of interest by a mosaic of individual flight lines. To avoid introducing 

inhomogeneity also into the calculated predictors, it is recommended to unify the 

density on the sub-cloud sections. This can be done by randomly dropping a suitable 

number of points from the cloud so that the number of so-called first reflections 

(which correspond to the number of transmitted laser pulses) is the same for all sub-

clouds. (For example, 2500, which corresponds to a density of 5 pulses/m2 for a circle 

of 500 m2.) The sub-cloud points (with or without density unification) comprise the 

input for calculating the predictors. An example illustrating this part of the procedure 

is shown in Fig. 7. 

 

Figure 7. Illustration of the arrangement of the sub-clouds within the point cloud for 
the training stage (left) and for the application stage (right). The marked circles have 
an area of 500 m2. They are distributed in a regular network with a step of 20 m in 
the application stage. 
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The available literature about ABAs recommends a number of statistical quantities 

characterizing the point (sub-) cloud and its structure and which are related to AGB. 

The point cloud is perceived as a set of statistical values representing height of 

individual points above the terrain. Above this are calculated the position’s 

characteristics (mean, median, quantiles) and variability characteristics (standard 

deviation and higher statistical moments). The specifics of laser scanning of forest 

are then the permeability characteristics most often calculated as the ratio of the 

number of points under a certain height versus the total number of all points. 

The part of the point cloud corresponding to the target quantity (AGB) usually enters 

the calculation described above. This can be, for example, all points classified as 

aboveground or all points whose Z coordinates (heights) exceed a specified minimum 

threshold (for example 1.3 m). 

All calculated predictors are paired with the ground value of the target quantity for 

the training stage. They enter the machine learning process described in subsection 

3.4. The specific issue of reducing the number of predictors is addressed in paragraph 

3.4.1. For the model application stage, the relevant predictors are the input from 

which the target quantity for each node of the regular network is calculated. 

Classification of the point cloud into individual classes was mentioned at the 

beginning of this subsection. (See also Fig. 6) Terrain class points are a prerequisite 

for calculating height aboveground. The classification of other classes (higher 

vegetation and buildings) can (but need not) be used as ancillary information, when, 

for example, only higher vegetation class points are taken into calculating predictors 

or, on the contrary, when nodes of the regular network in the vicinity classified as 

buildings occur in numbers exceeding a set limit are excluded from the modeling 

because they do not represent forest. 

3.3 Type of field data for the area-based approach 

The measured field data serve as calibration and validation material for estimates of 

AGB using Earth remote sensing products. For the quantification of AGB, 

conventional statistical forest inventory procedures are used that are based upon 

area extrapolation of data from a network of inventory plots (Tomppo et al. 2010). 

Inventory plots can have different shapes and arrangements, the most common 

being circular concentric plots (see below). Such plots are used in national forest 

ecosystem inventories in countries within the boreal, temperate, and tropical 

vegetation zones (Tomppo et al. 2010). AGB cannot be measured directly. It is 

quantified based upon measurable data for forest stands that are entered into 
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empirical models for quantifying volume of merchantable wood or AGB directly and 

their individual components. The target product is the AGB value expressed per unit 

area, most typically in tons of dry matter per hectare. Somogyi et al. (2007) discuss 

in detail the alternative methods for quantifying aboveground biomass according to 

the type of input data. 

The actual data collection in the field is by common forestry methods using modern 

measurement technology. Field-Map technology is a suitable tool for comprehensive 

collection and evaluation of forest inventory data (e.g., Cienciala et al. 2017, 

www.field-map.com). The circular plots should be distributed across the area of 

interest so that the result is a statistically representative random sample. The area 

can be stratified according to age classes or forest type and thus achieve a more even 

coverage of the range of stand types. Existing permanent inventory plots may be 

used or temporary plots may be established. 

3.3.1 Shape and size of inventory plots 

All inventory plots have a circular shape with radius r = 12.62 m (500 m2). To optimize 

the field survey, a concentric circle with radius 7 m is used to measure smaller trees 

with diameter at breast height (DBH) of 7 cm and more. Trees with DBH of 12 cm 

and more are then measured over the entire area. 

To measure tree regeneration (trees from height of 0.1 m and DBH up to 6.9 cm), a 

circle with radius of 2 m is used, located 7 m north of the center of the area (Fig. 8). 

Due to its negligible quantitative contribution, forest regeneration is often neglected 

for verification and validation of AGB data using remote sensing products, but it is 

important information regarding ecosystem dynamics and for forestry practice. 

 

Figure 8. Scheme of an inventory plot with concentric circles. 

http://www.field-map.com/
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The practical procedure for establishing and measuring the inventory plot consists 

of several consecutive steps (Table 1). The first step is to find and secure the center 

of the inventory plot. This is followed by description of the area, measurement, and 

description of individual objects. All measured and descriptive data are sent and 

written to the Field-Map Data Collector. To increase the quality of data, an essential 

activity before leaving the inventory plot is carefully to check the data for 

completeness of the database and, graphically, the tree heights. 

Table 1. Steps for establishing and measuring an inventory plot. 

Activity 

Identifying inventory plot center  

Securing inventory plot center  

Tree measurement and description  

Description of tree regeneration  

Checking the database   

Identifying the center of an inventory plot  

GNSS (Global Navigation Satellite System) satellite navigation is used when searching 

for the center of the inventory plot. Under the canopy, where the accuracy GNSS is 

lower, it is possible to use laser rangefinder navigation, which utilizes in addition an 

electronic compass. Existing maps and aerial photographs will be used to navigate 

close to the inventory plot.  

Securing the center of an inventory plot  

The center of each inventory plot must be secured in the field so that it can be traced 

back (in repeated or control surveys). To do this, so-called marked points are used. 

These points lie outside the inventory plot, and are precisely established from the 

center of the plot. By measuring back from the marked point, it is possible to trace 

the original center of the plot quickly and accurately. Trees that are significant in the 

stand (e.g., under-represented tree species and dominant trees) are most often used 

as marked points. The marked point is highlighted in the field in ecological color (in 

the case of a tree, at eye level and on any elevated tree roots). 

Describing basic characteristics of the inventory plot 

The basic characteristics of an inventory plot are included in the layer “Plot” (Table 

2). 
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Table 2. Attributes of the “Plot” layer. 

Attribute Field type Unit  

Identification number number - 

Coordinates of the plot center number m 

Magnetic declination number degrees 

Date of measurements  date - 

Responsible worker text - 

Note text  - 

3.3.2 Tree measurement and description 

All measurements and descriptions will be made only on those trees having the 

centers of their trunks at breast height within the inventory plot at the time of the 

survey and whose DBH values exceed the limit set for measurements within the 

individual inventory circles (Table 3). 

Table 3. Parameters of inventory plots. 

Radius of inventory 

plot circle (m) 

Area of inventory 

plot circle (m2) 

Tree DBH measured within 

individual inventory circles  

2.00 12.6 
Trees from height 0.1 m up to DBH 

6.9 cm over bark (tree regeneration) 

7.00 153.9 Trees with DBH  7.0 cm over bark 

12.62 500.0 Trees with DBH  12.0 cm over bark 

Following the principle of using inventory circles contributes to significant time 

savings during field survey. This arrangement ensures that the features from trees 

of all sizes identified in the plot are examined, but, at the same time, the laborious 

effort of measuring small trees and regeneration is significantly reduced. The size of 

concentric circles can be adjusted and applied accordingly for conversions to the 

total plot size. 

The parameters included in Table 4 are measured and/or recorded for all trees with 

DBH at least 7 cm. 
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Table 4. Attributes of the “Tree” layer. 

Attribute 
Field 

type 
Unit 

Assessed yes or no 

Living 

tree 

Standing  

dead tree 

ID number of tree number - yes yes 

Tree coordinates (X, Y, (Z) or 

polar coordinate) 

number m yes yes 

DBH – diameter at breast 

height 

number mm yes yes 

Tree height* number m yes no 

Tree species look-up 

list 

- yes yes 

Tree age number years yes yes 

Double-stemmed tree look-up 

list 

- yes no 

Standing dead tree look-up 

list 

- yes yes 

Tree break look-up 

list 

- yes no 

*Only for selected sample trees.  
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Figure 9. Measurement of tree positions within an inventory plot, with an example 

of rules for including trees according to their positions in the plot and DBH 

Technologies and technical procedures for measuring the attributes of surveyed 

trees in the inventory plots are based upon methodological standards for measuring 

forest inventory (Černý et al. 2010). 

3.3.3 Description of tree regeneration (if included in the methodology 
requirements) 

Tree regeneration within the so-called regeneration circle (r = 2.0 m with an area of 

12.57 m2) is evaluated on each plot. Because in mapping and measuring large trees 

the workers are moving about more in the center of the inventory plot, the 

regeneration circle is situated 7 m north of the plot center. Regeneration assessment 

applies to all individuals of tree vegetation from a height of 0.1 m to trees with DBH 

up to 6.9 cm over bark. 

If there is no tree individual from the height of 0.1 m up to DBH of 6.9 cm within the 

regeneration circle, then regeneration is not evaluated in the area, even if individuals 

of these dimensions are in the immediate vicinity of the regeneration circle. 

The basis for evaluating tree regeneration is classification of the individuals into so-

called regeneration height classes, which are defined by the height of the trees and 

tree species. The number of individuals in the class, tree species, age, average DBH, 

and average height are then determined for individual restoration classes. 
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Table 5. Attributes of the “Regeneration” layer. 

Attribute Field type Unit 

Regeneration height class look-up list - 

Tree species look-up list - 

Number of trees number n 

Average tree age number years 

Mean DBH number cm 

Mean tree height  number m 

The regeneration individuals of each tree species that are within the regeneration 

circle are included into the following height classes according to their heights to 

monitor the regeneration parameters: 

1. Tree height from 0.1 m to 0.5 m 

2. Tree height from 0.5 m to 1.3 m 

3. Tree height from 1.3 m to DBH of 6.9 cm over bark 

 

3.3.4 Measurement evaluation and biomass estimation 

Data collection in the field is followed by data evaluation for individual inventory 

plots. Inventory Analyst, which is a part of the Field-Map technology (www.field-

map.com), can be a suitable tool for evaluating the collected data. 

For biomass calculations, it is necessary to know DBH and height for all included 

trees. Because height measurement is limited to sample trees only, it is necessary to 

calculate the model height applicable for all trees. An example is the 

parameterization of the exponential model in the elevation chart (Fig. 10). The most 

accurate result is achieved by parameterizing the height model at the level of a tree 

species group and individual inventory plots. 

http://www.field-map.com/
http://www.field-map.com/
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Figure 10. Example of tree height model and parameters of exponential curve. Blue 
points: heights measured in the field, yellow points: estimated model heights. Y-axis: 
tree height (Výška). 

The next step is to calculate AGB according to published allometric equations (Table 

6) using the measured DBH and the calculated model height. For the recorded trees 

with DBH of 7–12 cm from a partial plot area (concentric circle, Fig. 2) it is necessary 

to use an expansion factor, which converts to the entire area of the inventory plot 

according to the ratio of the area of concentric circles. Specifically, 153.94 m2/500 

m2 = 3.25. 

Table 6. Reference allometric equation for biomass estimation by tree species 

groups. 

Tree species (group) Reference 

Spruce (all species) Vonderach et al. 2018 

Silver Fir Vonderach et al. 2018 

Douglas Fir Vonderach et al. 2018 

Pine (all species) Cienciala et al. 2006 

Larch Wirth et al. 2004 

Oak (all species) Cienciala et al. 2008 

English maple Vonderach et al. 2018 
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Tree species (group) Reference 

Ash Vonderach et al. 2018 

Birch Bronisz et al. 2016 

Linden Čihák et al. 2014 

Alder Johansson 2000 

Beech and other 

broadleaves 

Wutzler et al. 2008 

Aboveground biomass of trees with stem and crown breaks must be reduced by an 

appropriate coefficient according to their heights. By summing the biomass values 

of all tree species in the inventory plot, it is thus possible to obtain a total AGB for 

the entire circular plot of 500 m2. For subsequent calibration and verification with 

remote sensing products, and according to the focus of the study and statistical 

requirements of calibration and/or verification, specific selection of a set of 

measured data for AGB of individual inventory areas is used. 

3.4  Biomass modeling with machine learning  

Spatial information from the point cloud enters the modeling process by means of 

calculated statistical quantities, known as predictors, the combination of which 

always corresponds to the biomass value determined according to the field survey. 

3.4.1 Reducing the number of predictors  

The modeling process itself is preceded by a stage that should reduce the number of 

predictors that enter into the modeling. This is done to preserve or strengthen the 

predictive power of the model by removing redundant or less useful information 

with respect to the explained quantity. Thresholding can be performed on the basis 

of mutual correlation to maintain the maximum possible independence of the 

predictors from one another. Methods based upon recursive selection also can be 

used, as can be ordering of individual predictors according to their common F-values. 

The selection of input predictors should be independent of which machine learning 

algorithm is used in the training. 

3.4.2 Data set stratification 

Generally, a train-and-test approach is advantageously used for such modeling. The 

data set is split into a training subset and a testing subset. This splitting intentionally 

narrows the data set to train the model and provides for independently assessing 

the model’s success on data that is completely outside the training process. 
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A random stratified distribution with respect to the explained variable is carried out 

in order to have the most representative data set in both training and testing 

subsets. It is appropriate to consider species composition as a possible predictor to 

ensure that no training includes only one type of forest. This is done at both the level 

of basic classification (for example, deciduous / coniferous / mixed) and level of the 

predominant species (for example, spruce). Another forest inventory parameter that 

is used for stratification is stand age. It is recommended to adjust stratification to 

local forest characteristics, such as to reflect into it factors that we can expect might 

have influence upon the explained variable. 

It is important to split the data set into modeling sets several times to assess the 

influence of specific distribution on the resulting prediction and, if necessary, to 

remove a model that has not been able to capture and appropriately predict its given 

set. 

3.4.3 Machine learning process  

A parametric or nonparametric approach can be used for the modeling. The 

parametric approach is more appropriate from the viewpoint of interpretating and 

understanding the basic relationship between the explained variable and the given 

predictors, but it is more demanding in relation to input data. The use of 

nonparametric methods, which usually achieve greater prediction accuracy, is less 

demanding in its input needs but provides poorer interpretability. In this case, there 

is also the possibility to enter combinations of both continuous and categorical 

variables into the learning process. 

When using machine learning methods in the training process, one can rely on the 

default internal settings of the method parameters, select some specific settings, or 

determine a set of permissible values for individual so-called hyperparameters of the 

model and to allow the model itself to choose the optimal settings of these 

parameters with respect to the training set. 

3.4.4 Best model selection and its application 

A set of potential predictions was obtained from one method. The set size was 

determined by the number of considered divisions per train-and-test subset. To 

select the best prediction from the set, some criterion or point evaluation of the 

model is needed. Recent literature suggests the most commonly used evaluations 

are based upon R2, root mean square error (RMSE), bias, or possibly their relative 

form. Our findings suggest to use a more complex evaluation of model suitability, 

which is determined by the sum of partial point-rated characteristics. The limits for 
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the point evaluation of individual characteristics or threshold values should be 

defined as objectively as possible using, for example, quantiles of point-rated 

characteristics. The mean of several so-called “best” models (we usually use 10 

models) is assigned as the resulting prediction. Individual models can be similar in 

terms of point evaluation, and their predictive ability can vary depending on the 

forest stand type. This multi-model prediction approach allows an overview as to 

within which areas the deviation between models may be greater when comparing 

the map of differences between individual model predictions and the resulting map. 

By “applying the model” we understand the biomass values calculation based upon 

predictors in a regular point network that essentially could have any spatial 

resolution. See also interpretation and examples in the final paragraph of subsection 

3.2.2. One selected model or several models can be applied. In the second case, it is 

possible also to generate a standard deviation map of the submodels, which 

approximates the uncertainty. Concrete examples are presented in Section 4. 

4 Testing the technology 

The models for estimating biomass were developed primarily within forest plots in 

the Silesian Beskids, where work was ongoing for project QK1910150. The 

technology was subsequently verified on forest plots in the vicinity of the town of 

Ždírec nad Doubravou managed by the company Stora Enso 

(https://www.storaenso.com/cs-cz/). 

4.1 Silesian Beskids forest site  

The study site is situated within the Czech Republic part of the Silesian Beskids 

(49.6°N, 18.8°E) along the eastern border of the Czech Republic at altitudes between 

500 and 900 m a.s.l. (Fig. 11). The studied temperate mixed forest stands spread 

across ca 4,000 ha were dominated by Norway spruce  

https://www.storaenso.com/cs-cz/
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Figure 11. Field survey plots in Silesian Beskids (Map background: Orthophoto 
TopGIS). 



24 

 

(Picea abies (L.) H. Karst) and European beech (Fagus sylvatica L.) accompanied 

sparsely by silver fir (Abies alba Mill.), sycamore (Acer pseudoplatanus L.), Scots pine 

(Pinus sylvestris L.), European ash (Fraxinus excelsior L.), and silver birch (Betula 

pendula Roth). Interspersed were also less common forest species. 

Field data on trees and their biomass were collected during the vegetation season in 

July 2019 on 109 sample plots using Field-Map technology (www.fieldmap.cz) as 

described in subsection 3.3. Model tree height was calculated for all trees based 

upon measured sample heights fitting an exponential function. AGB was estimated 

at tree level based upon DBH and model tree height using published allometry 

equations (Wirth et al. 2004, Cienciala et al. 2006, 2008, Wutzler et al. 2008, 

Vonderach et al. 2018). 

The ALS data were acquired on 26 July in 2019 using the airborne RIEGL LMS-Q780 

scanning system. The average flying altitude was 410 m above ground level. Together 

with a pulse repetition of 400 kHz, these acquisition parameters yielded a point 

density of up to 15 points/m2. Preprocessing of the raw ALS data included the steps 

described in 3.2.2. 

Three methods were chosen for eliminating predictors. The first of the methods 

arranged the individual predictors according to their common F-values. A fixed 

number of predictors with the best ratings were selected. The second method used 

recursive selection with cross-validation, where assessment was based upon the 

support vector machine method with a linear core. The minimum number of 

predictors was four. The third method used correlation with the explained variable. 

Seven predictors were obtained: mean tree height and quantiles Q30 and Q70 for 

points aboveground; for points with a threshold of 2 m standard deviation of height, 

slope, permeability P40, and crown coverage area. The selection of input predictors 

was independent of the machine learning algorithm used in the training. 

The train-and-test approach was used for modeling. The data set was stratified into 

a training set (75%) and a testing part (25%). Stratification considered the type and 

distribution of forest. According to the relative proportion of conifers in the 

measured area, we distinguished three types of forest stand: ≥0.65 coniferous, ≤0.35 

deciduous, the remainder was considered a mixed area. 

The modeling was performed in a Python environment using the scikit-learn library 

(cite: Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-

2830, 2011.). Optimal setting of the hyperparameters of the methods used was done 

with the GridSearchCV function. The Random Forest and Multi-layer Perceptron 

methods showed good predictive power. 
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Best models were selected on the basis of several characteristics: R2, RMSE, and the 

so-called Class score and Regression score. The Class score evaluated deviation from 

the field survey data. If the deviation was less than 25 t/ha, the estimate was graded 

with a score of three points. The score was one point less with each additional 25 

t/ha. The resulting Class score was the mean of the individual evaluations. The 

Regression score evaluated susceptibility of the model to values discretization and 

linked the number of unique predictors and field data. To avoid overtraining of the 

model, R2 = 1 of the training set was not allowed. The minimum (maximum) value of 

individual characteristics was determined on the basis of Q75 of each quantity. The 

resulting set of models was in descending order with respect to the Class score, then 

to R2, and ascending to RMSE. The first 10 models were declared to be the best ones. 

The model was characterized by R2 = 0.87 at the level of the training set, R2 = 0.85 at 

the level of the test set, and was considered as a balanced model capable to predict 

the given area with a given accuracy. Also, the final model was characterized by 

RMSE = 53.95 t/ha and Class score = 1.94. Based upon the Regression score, the 

model could be declared not prone to discretization of the prediction. 

For the Silesian Beskids site, a set of predictors was calculated in a regular grid with 

a spatial resolution of 10 m. The best 10 models were applied.  In case of negative 

prediction value, that value was set to zero. The resulting map was a mean prediction 

from all those models applied. The standard deviation of the resulting product 

illustrated which parts were more prone to greater inaccuracy and where, on the 

contrary, the selected models almost matched. From Fig. 12b it is apparent that in 

our case, the model weakness was in the transitional parts of the forest – from the 

lower forest stands to the higher or perhaps marginal forest. The deviation for higher 

vegetation was within the RMSE of the model. 
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a) 
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c) 

Figure 12. Aboveground biomass (AGB) map (a), map showing standard deviation of 
the submodels (b), and visualization of biomass model performance (c) at the Silesian 
Beskids study site. Scatter plot scale is colorized according to differences in AGB 
estimates between field survey AGB and modeled AGB: green is difference ≤25 t/ha, 
blue is difference of 25–50 t/ha, yellow is difference of 50–75 t/ha, and red is 
difference >75 t/ha. 

4.2 Ždírec nad Doubravou forest site  

To verify the model built in 4.1 and the technology as a whole (Fig. 3) a private forest 

property at Ždírec nad Doubravou was chosen. The forest site has an area of 168 ha 

and is situated where the Bohemian–Moravian Highlands meet the Iron Mountains 

(Fig. 13). 

Field data were collected during the vegetation season in October 2021 using Field-

Map technology (www.fieldmap.cz) as described in 3.3. Fifteen subplots were 

visited, where 454 trees and 137 heights were measured. These were mainly 

coniferous stands in which spruce predominated and the merchantable volume on 

the plots ranged from 0 to 628 t. 
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Figure 13. Field survey plots near Ždírec nad Doubravou (Map background: 
Orthophoto TopGIS). 
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The ALS data were acquired on 1 October in 2021 (Fig. 14), using the airborne RIEGL 

LMS-Q780 scanning system. The average flying altitude was 500 m above ground 

level. Together with a pulse repetition of 400 kHz, these acquisition parameters 

yielded a point density of up to 15 points/m2. Preprocessing of the raw ALS data 

included the steps described in 3.2.2. 

 

Figure 14. Layout of airborne flight lines for laser scanning data collection at the 

Ždírec nad Doubravou forest site (Map background: Mapy.cz, ©Seznam.cz, 

©TopGis). 

 

The model developed for the Silesian Beskids forest site (4.1) was applied to produce 

the biomass map for the Ždírec nad Doubravou forest site. The final AGB map was 

characterized with RMSE = 165 [t/ha] and R2 = 0.7 (Fig. 15). 
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a) 
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c) 

Figure 15. Aboveground biomass (AGB) map (a), map showing standard deviation of 

the submodels, and visualization of biomass model performance (c) at Ždírec nad 

Doubravou study site. Scatter plot scale is colorized according to differences in AGB 

estimates between field survey AGB and modeled AGB: green is difference ≤25 t/ha, 

blue is difference of 25–50 t/ha, yellow is difference of 50–75 t/ha, and red is 

difference >75 t/ha. 

A map of merchantable tree volume was produced for the Ždírec nad Doubravou 

study site using the described technology and modeling approach (Fig. 16), where 

reference AGB values for modeling were converted to tree volume units using tree 

allometry. Merchantable tree volume estimates on stand level are more often used 

in forest practice by forest owners in the Czech Republic while AGB is used for 

assessing changes of carbon stock. These two quantities (tree volume and AGB) allow 

quantification of the analogous processes and have a strong correlation (Fig. 17, 

Table 7). 
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a) 
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b) 

Figure 16. Merchantable tree volume map (a), and its standard deviation between 
submodels (b). 
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Figure 17. Relationship between volume and aboveground biomass (AGB) calculated 
from field measurements. 

Table 7. Aboveground biomass and merchantable tree volume for selected 
individual trees measured at the Ždírec nad Doubravou forest site. 

Species Volume [m3/ha] Aboveground biomass [t/ha] 

Norway spruce 448 271.6 

Pedunculate oak 22.8 17.4 

Silver fir 198.8 94.8 

Norway spruce 4.4 2.8 

European beech 59.8 63.2 

Silver fir 7.4 4.2 

Norway spruce 127.4 75.2 

Scots pine 35.6 17.4 

European beech 31.4 33.8 



37 

 

5 Economic aspects of the technology’s use 

Efficiency (in economic terms) is a value determined as the ratio between the results 
of an activity consisting in the production of goods or services and the cost of labor 
and other resources necessary for realizing that production (Samuelson and 
Nordhaus, 2009). The time requirements for forest AGB assessment (time required 
to complete processing of the estimation) were quantified using two approaches: 1) 
conventional field inventory, and 2) ABA using ALS. We then analyzed those time 
demands in comparison with the accuracy achieved from using these approaches (as 
a measure of the results of the activity) while disregarding the costs of labor. 

Time requirements were estimated independently and summarized for the stages 
campaign preparation, data acquisition, and data processing for both approaches 
and then for the two cases described herein above: 1) for 15 forest plots from the 
Ždírec nad Doubravou forest site, and 2) for 101 forest plots from the Silesian Beskids 
forest site (Table 8). Time requirements needed for terrain data acquisition were 
based upon the authors’ experience in mountainous forest: 60 min per plot in the 
case of field measurements using Field-Map technology (Novotný et al. 2021). The 
uncertainty of having weather and other conditions suitable for flight and for ALS 
campaigns was considered in calculating time demands. 
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Table 8. Time spent for field inventory and ALS approaches. A is a variant for 15 forest 

plots from Ždírec nad Doubravou forest site. B is a variant for 101 forest plots from 

Silesian Beskids forest site. 

 Stage Aspect ALS Field 

A 

(entire 

forest area) 

B 

(entire 

forest area) 

A 

(200 

trees) 

B 

(1400 

trees) 

Campaign 

preparation 

Setup time 

Minimum number 

of personnel 

  

Required total 

time [work hours] 

4 

1 

  

 

4 

4 

1 

  

 

4 

5 

1 

  

 

5 

7 

1 

  

 

7 

Data 

acquisition 

Setup time and 

data acquisition 

Minimum number 

of personnel 

  

Required total 

time [work hours] 

2 

 

2 

 

 

4 

2.5 

 

2 

 

 

5 

9 

 

2 

  

 

18 

100 

 

2 

 

 

200 

Data 

processing 

Preprocessing 

AGB modelling / 

AGB calculating 

  

Required total 

time [work hours] 

5 

2 

 

 

7 

6 

2 

 

 

8 

- 

8 

  

 

8 

- 

8 

  

 

8 

Totals [work hours] 15 16 31 215 
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ALS workload increased by ca 7% (from 15 work hours to 16 work hours) when the 

number of analyzed forest plots increased by almost 7 times (from 15 plots to 101) 

(Table 8). By comparison, the field measurements workload increased by roughly 7 

times (from 31 work hours to 215 work hours) under the same conditions. The laser 

scanning technologies acquire information about all trees at forest sites, thereby 

allowing to produce wall-to-wall AGB maps. Meanwhile the field measurements 

cover only individual forest plots. 

The technology of forest AGB assessment based upon ALS data was shown to be less 

time demanding in comparison with field AGB assessment, and it demonstrated 

reasonably accurate biomass estimates. On this basis, we can see that the 

technology could play an important role in stand-level forest inventory over large 

areas and can be recommended to aid forest management practice in the Czech 

Republic.  

6 Conclusion 

The technology for Forest Aboveground Biomass Assessment Using an Area-Based 

Approach was developed and tested for the conditions of Czech forestry. Testing of 

the technology at the Ždírec nad Doubravou experimental forest locality confirmed 

applicability of the procedures for estimating quantities and area distribution of 

aboveground biomass in forest stands. 

The technical documentation for the technology describes the procedures and 

practical recommendations for its use in the context of Czech forestry. Specifically, 

this concerns the setting of data acquisition parameters, the season for airborne data 

acquisition, field survey data collection, and the selection of modeling algorithms. 

These procedures show a promising way of applying modern methods of airborne 

laser scanning in forestry that will allow repeated data acquisition and obtaining the 

current spatial distribution of aboveground biomass. Quantitative assessment of 

biomass changes can thus supplement critical information on the state of 

development of forest resources in relation to the carbon cycle and the changing 

conditions of the growth environment. 
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List of abbreviations 

ABA – area-based approach 

AGB – aboveground biomass 

ALS – airborne laser scanning 

DBH – diameter at breast height 

RMSE – root mean squared error 
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